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FACE LIFT OF REAL TIME OPTIMIZATION TO TRULY DYNAMIC 

On-line, real-time optimization by computers has been developed and practised since the 1960's with 

varying success within the process industry. Typically optimization is based on existing rigorous process 

models, which assume steady state operation. However, processes rarely run in conditions, where the 

models explain the process behaviour at best. This paper will outline improved methods of on-line real-

time optimization including a comparison with the traditional approaches. A dynamic real-time process 

optimization (DRTO) is introduced, which leverages conventional model predictive control (MPC) applied in 

advanced process control (APC) towards economically driven, fully functional real-time on-line 

optimization.  

Optimization and process models 

One of many optimization tasks related to design and operation of process plants is the calculation of 

optimum flow rates, temperatures, pressures, and chemical compositions etc. of individual major units of 

equipment such as chemical reactors, distillation columns, compressors and steam/heat generators. This 

task, sometimes called "process simulation", is done by advanced software including rigorous mathematical 

models and requires many work hours by experienced specialists, even if it is common to limit the task to 

some fixed, constant conditions of the process to be designed and it is ambient. Normally, these 

calculations assume steady state operation of the process, where all variables attain constant values, i.e. 

they do not vary as a function of time. This calculation task involves investigation of the process behaviours, 

for instance in different temperatures, but the transition from one (design) temperature to another 

(design) temperature is omitted, because it  would involve a function of time. This reveals one of many 

idealisations seen on the process designer’s desk: in reality, transitions between different process 

conditions are very frequent, but they are normally left away from process optimization calculations. 

Process equipment related to transitions, like tanks, are dimensioned by rule of thumb, but there is an 

increasing trend towards using dynamic simulators for more demanding cases or for optimizing the process 

with respect to process dynamics. 

Going on-line 

It is quite rational to think of re-using the rigorous models developed during the process optimization 

calculations mentioned above in real-time optimization of the process. On-line, real-time optimization 

(RTO) can be built around the developed process models by applying appropriate optimizer software which 

finds the maximum of a benefit function related to the process while respecting the behaviour of the 

process described by the models. For example, if the optimizer considers extracting more production from 

a distillation column for more benefit, the model defines how the product quality approaches its purity 

specification limit.  

The rigorous model applies for the process in steady state conditions, i.e., when all flows, temperatures, 

pressures, raw-material and product qualities are at their fixed values. Because processes in reality always 

are subject to fluctuations, the results provided by using the model are not correct. In RTO, this challenge is 

handled by the software, which looks at the historical behaviour of relevant process variables and flags an 

approximate steady state condition, when the variance of those variables fall below given limits. 

Consequently, this launches the real-time optimization cycle. 
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Figure 1. Building blocks of RTO. The data reconciliation and steady state detection blocks may be seen as "interface 

to the real world".  The output of the optimizer are "commands" automatically sent to an underlying APC or directly to 

the process control system. 

It is mandatory for RTO to use measured process data in order to reflect the true situation of the process as 

closely as possible. Typically, RTO systems incorporate software for data reconciliation, which applies small 

corrections to the average values of measured variables over a past time period in order to make the 

corrected values to close material, energy and chemical component balances. In addition, data 

reconciliation compensates for measurement errors. 

When the real-time optimization cycle is finally launched, it typically requires several minutes or even hours 

for completion. Due to the iterative nature of the calculations,  some ill-conditioned data input (although 

checked for steady-state and reconciled) may cause convergence problems leading to prolonged calculation 

times or even failures, which might prevent  obtaining new optimization results for this cycle. 

Conclusively in spite of its sound basic idea, RTO based on rigorous steady state models do have drawbacks, 

which relate to built-in complexity and a certain failure probability. In particular, processes with frequent 

changes in raw-materials, operating conditions, ambient conditions and product quality specifications (or 

grades) may not be able to run RTO at all, if they seldom come close to steady state operation. 

There is no such thing as steady state 

Saying this categorically may be an over-statement, but in fact processes rarely operate in steady state. This 

led us to develop Dynamic real-time optimization (DRTO) to tackle previously mentioned issues of 

traditional RTO. One of the initiatives for the development came from the excellent track record of model-

predictive control (MPC), which is the most commonly used methodology for advanced process control 

(APC) within the process industries. The properties of MPC may be crystallized as follows: 

 It uses experimental, simple process models derived from true, measured process behaviour 

 These models are used to predict the expected deviation in controlled variables with respect to 

their targets 

 The deviation is formulated as a cost function, which is minimized at every control cycle 

 The control cycle is short and at every cycle true process measurements are obtained and 

incorporated in the control deviation minimization 

 MPC honours and, on the other hand, exploits the process constraints  
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MPC is based on feedback control, which does not rely on steady state conditions. Respectively, short cycle 

times and frequently updated measurements eliminate the need for data reconciliation. 

 

Figure 2. MPC minimizes control deviation i.e. squared differences between predicted process variable 

values and target 

The development steps from MPC to DRTO exploits the fact that MPC already incorporates optimization in 

terms of minimizing a cost function as depicted in Figure 2. The following steps define the actual DRTO 

development on a principal level: 

1. Replace the control deviation cost function of MPC with an economically meaningful cost function or 

benefit function, which then shall be maximized 

2. Define limits for process variables and update the constraint set already existing within MPC with new 

constraints reflecting the process control requirements 

However, substantial amount of advanced engineering work is remained related to handling of the 

enlarged constraint set and more irregular cost/benefit functions compared to the smooth control 

deviation cost functions of MPC. 

 

Figure 3. DRTO minimizes an economical cost function or maximizes an economical benefit function 

Having done this, we observe that DRTO inherits the good properties of MPC such as low sensitivity to 

measurement and model error. Also, the practicalities of "tuning" DRTO for performance are very similar to 

that of MPC which saves a lot of specialist work. What is not borrowed from MPC is the typical feature that 

MPC is typically built separately for process units, but DRTO may easily encompass a whole process 

complex consisting of multiple units. 
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Some more math 

A little more mathematics is in order to shed some more light on the DRTO concept.  

Assume that we wish to maximize a benefit function  

p1*P - p2*R - p3*E , 

where P is the flow rate of product, R is flow rate of raw material and E is 

power consumption and p1 , p2 and p3 are corresponding prices. This is of 

course a simplified setting because we have only one product and one raw 

material but it will be descriptive anyhow. P, R and E all depend on a set of 

manipulated process variables x1, x2, x3, … xN, all of which affect the P, R 

and E due to their own characteristic behaviour including larger or smaller 

delay (the dynamics!).  

Now, RTO strives to find optimum fixed steady-state values for the set of variables x1 , x2 , x3 , … xN , for a 

future time period of several hours ahead until the next optimization calculation which may be severely 

delayed because of process not achieving steady state. 

DRTO basically uses the same benefit function as above but does not restrict to fixed values of the variables 

during the future time period which we may denote as "0...T" where zero means the present time and "T" a 

time several hours ahead, the end of the so called optimization horizon. We may change the notations from 

above in order to underline the fact that DRTO honours the behaviour of the process as dependent on time 

and does not assume steady state operation: 

Rewrite benefit function:  

p1(0…T)*P(0…T) - p2(0…T)*R(0…T) - p3(0…T)*E(0…T) 

(with point-wise multiplication) and the set of process variables x1(0…T), x2(0…T),  x3(0…T),  … xN(0…T).  

In purely mathematical terms the variables are now re-defined from being scalar-valued to being vector-

valued. Note, that the re-formulated benefit function also includes the prices as functions of future times. 

This means that if we have price forecasts, we can just plug in them in the benefit function and DRTO will 

run the process optimally to prepare (look ahead) for an upcoming price change. RTO does not include this 

‘look ahead’ feature, and it needs to do a re-optimization at the time of the price change, if possible, i.e. if 

the process happens to be in a situation close enough to steady state. 

Neste Jacobs offering 

Our company is devoted technology-intensive process development and engineering as well as 

performance improvement. The various optimization tasks mentioned in the introductory section above 

are available from us including dynamic simulation for advanced process design and dynamical studies. In 

particular, we want to emphasize our NAPCON process control technologies including NAPCON Controller 

model-predictive control and NAPCON Optimizer Dynamic real-time optimization. 

One of our most successful NAPCON Optimizer projects was for an ethylene cracker, which is described in 

the article in Hydrocarbon Processing from October, see list of literature below. 

 

P = flow rate of product 

R = flow rate of raw material 
E = power consumption  
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x1, x2, x3, … xN =manipulated process variables 
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